Telegram Group & Telegram Channel
🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!



tg-me.com/machinelearning_interview/1787
Create:
Last Update:

🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1787

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Machine learning Interview from us


Telegram Machine learning Interview
FROM USA